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TECHNICAL MEMORANDUM X-64600 

THM FOR SOLVI G THE POPOV' 
ED TO SAMPLED DATA SYSTE 

SUMMARY 

A systematic means is provided for analytically solving the Popov 
stability criterion that w a s  developed by Tsypkin [ 11 for application to sampled 
data systems. It is developed in a manner that is amenable to solution by a 
digital computer, regardless of the order of the polynomials defining the 
numerator and denominator of the z-transform of the transfer function repre- 
senting the linear part  of the plant. 

INTRODUCTION 

Lindorff [ 21 has presented a derivation of Popov's stability criterion 
applied to sampled data systems which follows the development prepared by 
Tsypkin [ 11, It provides a criterion for establishing sufficient conditions 
for absolute stability of a class of nonlinear sampled data systems described 
in Figure 1. The system must be capable of being separated into a single- 
valued nonlinearity represented by $ (. ) and a linear plant represented by 
G ( s ) .  If this system meets the conditions, 

and G(s)  represents a stable plant with at  most one free integrator, then 
the Tsypkin version of the Popov stability criterion is met if 

I. A portion of this report w a s  presented as Paper No, G5 at the 
Third Annual Southeastern Symposium on System Theory at the Georgia 
Institute of Technology, Atlanta, Georgia, on April 5-6, 1971. 



I 

Figure 1. Model of class of nonlinear sampled data systems. 

T s  where z 3 e , T is the sampling period, and G ( z )  represents the 

z-transform of G ( s )  which is evaluated a t  z = e , i. e. , on the unit circle 
in the z-plane. 

iwT 

A s  with continuous systems, the stability requirement on the linear 
part  of the plant can be weakened to include open-loop unstable plants 131, This 
is shown through a coordinate transformation, 

where gain E is chosen so that the poles of the transformed system open-loop 
transfer G ( S I  lie within the unit circle in the z-plane [ Z ]  . This is eyuiva- tr 
lent to requiring the nonlinear function 6 ((TI to lie within the sector [ E ,  k] 
for the original system to be absolutely stable. 

In determining the upper bound K of the sector,  the real par t  of G(z)  
must be determined in some manner. This may be done by plotting G ( z )  in 
acomplex plane or  by analytically determining the real  part  of G ( z )  and then 
finding i ts  minimum value. Either procedure becomes tedious as the order of 
a system under investigation increases. 

ON OF PROPOSED ALGOR 

A systematic means for analytically solving the criterion of equation ( 3 )  
is provided, as a subsequent development to one suggested earlier by the 
author in a more primitive forin [ 41 . It is developed in a manner that is 
particularly amenable to solution by a digital computer or electronic calculator, 
regardless of the order of the polynomials describing the numerator and 
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denominator of G(z).  It requires only that G(z) be expressed in terms of 
two polynomials in z ; i. e. 

J c 17.z 
J j=O 

The criterion of equation ( 3 )  may be recast  in the form 

where 

n 

d 

j =@ 
D, = 7.x Y 

~j 

d 

D2 = V j  Yj  y 

j = O  
(7) 

and 

The te rms  X .  and Y .  are developed by means of the recursive 
J J relationships, 

x - 2 p x . + x  = o ,  
jt-1 J j-1 



where 

X , = Y , = I  

Y , = O  

and 

X , = P  f 

or  by the alternate recursive relationships, 

x j+ i  = P X j  - (1 - P?Yj , 

= x . + p y  , 
'j+i 3 j 

See Appendix A for the development of these relationships. 

Figure 2 represents a logic diagram demonstrating the ease with which 
a general program can be established to solve equation (6)  for any plant meet- 
ing the conditions specified in the introduction. The linear portion of the plant 
may be of any order as long as it can be expressed in terms of a z-domain 
open-loop transfer function. See Appendix B for computer program. 

DER I VAT ION 

The derivation of equation (6) from equation (3 )  is brief. Defining Z 
as 

it follows that Z j may be expressed as 

Z j  = X .  + i Y .  
J 3 

(See Appendix A . )  

It is apparent from the definition of equation (IO) that 

x , = 1  ~ Y , = O  , 

x , = p  , Y , = 1  D (12)  
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CALCULATE INTERMEDIATE VARIABLES 

o =o + A m  
p = cos ( UT) 
x j  = 2PXj-4 - xj-2 
Yj = 2 byj., - Yj-2 

Figure 2. Digital computer logic diagram. 
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one may use eguations (12) and the recursion relations of equations (9)  to 
generate values of X .  and Y.  for  j > 1. Then, equation (11) may be 

substituted into equation (5) , letting z = E, 
J J 

n n 

j = O  
7 .x .  + i c 7 . y .  

J J  J J  j=O 
(13) 

Taking the real  part  of equation (13) yields the left half side of equation (6)  . 

EXAMPLE 

Several examples show how the proposed algorithm is implemented. 
Consider an integral control servo system [5] shown in Figure 3.  The cor- 
responding z-transform of the linear portion of the plant may be put in the 
form of equation (5) and is described in Table 1. 
to the digital program, the left side of inequality (6)  may be solved as wT 
varies  in value from zero to 7r for selected values of T. The results are 
printed out, and the minimum value of 

By using Table 1 as an input 

is selected as the maximum value which K may possess. The results, repro- 
duced in Table 2 ,  agree with those of Reference 5. The same algorithm has 
been used to find stability limits on K for  two other examples of Reference 5 
(Bertram’s example and the integral-control example with digital compensa- 
tion added). The results have been identical. 

Figure 3 .  Model of integral-control servo system. 
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TABLE I. TRANSFER FUNCTION COEFFICIENTS 
FOR INTEGRAL-CONTROL SERVO SYSTEM 

I J I  I 7 1 

2 0 I I I 
TABLE 2. STABILITY LIMIT ON K 

I Sampling Period T 1 

A general computer program can be developed to determine the suffi- 
cient condition for  stability of a class of nonlinear sampled data systems in 
te rms  of a sector within which the nonlinearity must lie, The criterion used 
in developing the computer algorithm is Tsypkin's development of the Popov 
stability criterion. Work is now in progress to investigate a similar algo- 
rithm for Jury's  and Lee's [ 51 less restrictive stability criterion, 

where 

and q is a real number, 

7 





The two sets of recursive relations, equations (9a)  and equations (9b) , 
are developed from the definition of z ,  

Letting 

may be rewritten as 

If z' is raised to the jth power, it may be written as 

Two identities [ 61 for cos jut and sin jut may be rewritten in terms of p:  

and 

p ( j  -; - I )  ,j-2p-1 j - 2 p - I  
sin jwT = 4- (-1) P y (A-4) 

p=o 

where p is an integer, If sin j w T  and cos juT are defined as 

- _LL ----.-- 
2, I am indebted to Mr,  Hans Hosenthien, Chief, D Analysis Office, 

Astrionics Laboratory, NASA, Marshall Space Flight Center, for the develop- 
ment of the alternate set of recursive relations of equations (9b), 

9 



and 

sin jwT E Y.41 - P2 , 
J 

(A-5) 

examination of equations (A-3) and (A-4) shows that X.  and Y .  a r e  poly- 

nomials in P .  If equations (A-5) are substiiuted into equation (A-2) , the 
resulting expression becomes of the form 

J 3 

The recursive relations of equations (sa) o r  (9b) may be derived by 
-j+l 

writing z as 

-j+l -j- z = z z  

yielding the recursive ' tions 

xj+i = XjP - Y . ( I  - P 2 )  
J 

and 

Yj+l = x. + YjP ' 
J 

From the definition of E, 

x , = Y ,  = I  Y , = O  X , = P  s 

Using equations ( 9b), one may readily derive equations (Sa)  a 
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The Popov-Tsypkin digital program w a s  written in Fortran IV, aqd com- 
puter runs were made on an SES, 840 digital computer. Using the Tsypkin ver- 
sion of PopovDs criterion, the program calculates and prints the negative 
reciprocal of the real part of the z-domain transfer function representing the 
linear portion of’the plant. Values of the negative reciprocal are calculated 
for incremental values of the independent argument UT and scanned; the 
smallest  value is selected as the upper bound of the nonlinear (or Popov) 
sector. The following mathematical model is deseribed,by equations (3) and 
(6) through (sa) and is the basis for all program calculations (see program symbol 
table for relations of mathematical symbols and program symbols 

XO 

YO 

xi 

Yi 

Description 

X ( i )  itial value for X. 

U ( i )  Initial value for Y. 

X‘2)  Initial condition for X. 

itial condition for Y. U(2Y 

A Increment denominator which is divided 
into RA to form the omega increment 
value, 

RA 

WP 

T 

DW 

Range value of omega. 

Initial omega. 

parameter which should be set to I. 0 
and associated with wT limit values. 

Delta omega which value is used i f  
omega equals 0. 



Math Symbol . Program Symbol 

d 

n 

K’ 

ID 

Description 

Upper limit on D, and D, summation and 
has value d + I. 

N Upper limit on N, and N, summation and 
has value n + 1. 

K P  Program flag which when se t  to 0 causes 
a Popov-Tsypkin run to be made. This 
relates to a program modification now 
under development to solve equation (14) e 

See program inputs for all other values. 

Card I - Reads X (  I), Y (1) ~ and Y ( 2 )  under a 4F15.8 format. These 
are the initial X and Y values. 

Card 2 - Reads AIN, RA, and WI which are the increment value of 
omega, the range of omega, and the initiaI omega. Keads under 
a 4F15,8 format. 

Card 3 - Reads T under an F15.8 format. 

Card 4 - Reads DW, the delta omega value, under an FI5.8 
format. 

Card 5 - Reads ID, the .Jalue for d under a2 I5 format. 

Card 6 - Reads N,  the value for n ,  under an I5 format. 

Card 7 - Reads K P ,  the value which when set to 0 causes the program 
to make a Popov-Tsypkin run using the initial equations to 
compute Re’ { G(  Z ) }  and its negative reciprocal. When 
K P  = I ,  the program omits this phase and computes a K* 
equation set; where K P  = 2 ,  the above options are omitted 
and the program solves a quadratic K equation. For  the 
Popov-Tsypkin option always set K P  = 0. 
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Cards 8 through I1 contain the inputs involving options other than the Popov- 
Tsypkin equation solutions that were part  of the program study and a r e  included 
in the present version of the program, These inputs are included here only 
for the programmers information. 

Card 8 - Reads I&, the number of Q elements, under an I5 format. 

Card 9 - Reads IK, the number of K elements, under an I5 format. 

Card 10 - Reads a r ray  Q, containing all values of q, under a 
4F15.8 format. 

Card I1 - Reads a r ray  AK, containing all K elements, under a 4F65.8 
format. 

mple Run Case 

The following sample case was run successfully on an SEL 840 digital 
computer. The appropriate gamma and eta functions listed in Table I of the 
computer printout were used in the Popov-Tsypkin program with the input 
data listed here and described under the card input data. The input data wi l l  
always be followed by the printed variable values €or T,  UT, Re { 6( z)}  , 
andK < -i /Re {G(Z)}, 



a 
2 
3 
4 
5 
6 
7 

9 
10 

a 

13 
1 4  
95 
3.6 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
9 

50 
51 
52 
53 
54 
55 
56 
57 
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98 
59 
4 0  
61 
62  
6 3  
4 4  
45  
66 
67  
6 8  
69  
7 0  
71 
72 
7 3  
7 4  
75  
7 6  
77 
7 8  
7 9  
80 
81 
82 
8 3  
8 4  
8 5  
86  
87 
8 8  
8 9  
90  
9 1  
9 2  
9 3  
9 4  
9 5  
94 
9 7  
9 8  
9 9  

100 

103 
104 
105 
106 
107 
108 
109 
13bQ 
111 
112 
113 
114 
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6$6 
1 x 7  
I%$ 
1 8 9  
220 
121 
3.22 
112.3 
$24 
125 
128 
1 2 7  
8 2 8  
1 2 9  
190 
13% 
132 
133 
134 
135 
136 
1 3 9  
138 
139 

141 
162 

144 

190 
15% 
152 
153 
1 5 4  
155 
$54 
1 5 7  
1 5 8  
159 
160 
161 
182 
1 4 3  
164 

16 
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TARLt 1 0 4 / 1 9 / 1 1  
iNPUl  O A T A  

X ( 1 )  = 1 . u o o u o  Y C l )  5 , 0 0 0 3 0  Y ( 2 ,  = 1 ,00000  
0’4FtiA INCYEMkMT = 314,f ’0000 @MEGA Y A N G t  3 .14000  OMEGA INITIAL a 
D e  J 
N =  2 
T =  1 t !J 0 0 0  0 0 0  
DELTA O M E G A  = . o o i o o o u a  
KP = 0 10 = 9 TK = 4 
Q( 1 )  = .00010  
Q( 2) = .20000 
Q( J )  = .40000  
O( 4 )  = * 6 0 0 0 0  
Q( 5 )  = ~ 0 0 0 0 0  
GI( 6 )  = i.aoooo 
O( 7 )  = 1.00000 
Q( a )  = i ~ ’ . o o o o o  
( 3 1  9 )  lOLiOOU00 
K (  1) = 
K( 2 )  = 
K (  3 )  = 
K( 4 )  = 

T 
. 1 0 0 U 0 0 0 0 t  o i  
. 1U000OUOE 01 
. i a o u u o o u t  01 
. 1 0 0 0 0 0 0 0 E  0 1  
. 1 0 0 0 u 0 0 o t  01 
.100UOOOOE 0 1  
. 1 0 0 0 0 0 0 0 E  01 
. I ~ O O U O O O E  01. 
. 1 0 0 0 0 0 0 0 E  0 1  
. 1 0 0 ~ 0 0 0 ~ t  01 
.100UUOOOE 01 
* lOU0UOOOt 0 1  
.100U000Ut  0 1  
.1uOUOonOk 0 1  
. ~ O ~ U O O O U E  0 1  
, 1 0 0 U 0 0 0 0 t  0 ’  
.10000000k 0 3  
. 10000000 f i  0 1  
.100000nUE 0 1  
- 1 0 0 0 0 0 0 0 E  0 1  
. 1 0 0 u U f l n o t  01 
. 1 0 0 0 0 0 ~ 0 E  01  
, 1 0 0 U 0 0 0 0 t  01 
. 1 0 0 0 0 0 0 0 E  0 2  
. 1 0 0 U 0 0 @ 0 t  0 1  
. 100u000UE 03. 
*1000000DE 03 
.10000000f 0 -  
, l ~ O O O 0 ~ u E  0 1  
. 1 0 0 0 0 0 0 0 ~  0 1  
. l U O U O O O O E  0 1  
. 1 0 0 U 0 0 ~ 0 E  01 
.1000000UE 0 1  

, 40990  
.49000  

1*99UOO 
L’.OO000 

WT 
. 1 0 0 0 0 0 0 f l E ~ Q 1  
,2000000OE-01 
. 3  0 0 0 0 0 OE * 0 1 
.4000000QE-01 
.5000000UE-01 
.60U00000E-O1 
.7ooJooI)nE-o1 
98000JOOUE-01 
. 9  0 0 U 0 0 0 ‘:E - 0 1 
* 1 0 0 0 0 0 0 0 E  00 
,llUOOOOtiE 0 0  
.1200000OE 00 
. i 3 o o n o o u ~  0 0  
* 1 4 0 0 0 0 0 0 E  00 
. 1 5 0 0 0 0 0 0 E  0 0  
.160OUOOUE 0 0  
.1700000UE 04 
. lROJ000bE 0 0  
. 1 9 0 0 0 0 0 0 E  0 0  
, ~ ~ O O O O O U E  00 
. 2 1 0 ~ 0 0 0 0 E  0 0  
.220oooos~ 0 0  
.23000000E 00 
.240UOOOIlE 00 
. 2 5 0 0 0 0 0 I ~ E  0 0  
t2600000OE 0 0  
,27000000E 0 0  
+28000000E Q U  
.29000000E 0 0  
*JOOQOOO~JE O U  
.3100000‘ iE 0 0  
. J z o o o o o u €  00 
. 33003000E 0 0  

RE(G(Z)) 
- . 1499028YE 
- .14993156E 
- .1498460YE 
- . 1 4 9 7 2 6 5 l E  
- .1495731hE 
- ,149J8602E 
- .1491653YE 
- .1409115JE 
- .14862474E 
- .148J0535E 
- .14795373E 
- .14757034E 
- .14715556E 
- .1467098YE 
- . i 4 6 2 3 3 a > ~  
- . 1 4 5 / 2 7 9 6 E  -. 1 4 5 1  928:IE 
- .14462896E 
- . 1 4 4 0 3 7 0 6 E  
- .14341774E 
- .14277166 f  
- . 14209953E 
- .14140206E 
- ,14067994E 
-, 1399339.5E 
- , l J 9 1 6 4 7 / E  
-, 1J8J732JE 
- .13756009E 
- . 1 5 6 / 2 6 1 2 E  

- ,15499889E 
- .1341072ZE 
- .13319791E 

- . 1 3 5 a 7 2 1 2 ~  

K LESS 
0 1  
0 1  
01 
0 1  
0 1  
01 
0 1  
01 
01 
01 
0 1  
01 
0 1  
01 
0 1  
0 1  
0 1  
0 1  
01 
0 1  
01 
01 
0 1  
01 
01 
0 1  
0 1  
01 
0 1  
01 
01 
01 
01 

THAN -%/RE 
, 6 6 6 7 4 2 7 3 t  
.6669709 /E  
,66735141E 
.66780411E 
. 6 6 8 5 6 9 1 6 €  
.66940660E 
. 6 7 0 3 9 6 7 9 t  

- 6 7 2 8 3 5 5 0 E  
,67420449E 
, 6 7 5 8 0 6 8 9 f  
,67764296E 
.61955299€  

. 6 0 3 8 3 6 2 l k  

.68621012E 

.68073939E 
,69142447E 
. 6 9 4 2 6 5 7 8 €  

,70041904E 
. 7 0 3 / 3 2 0 1 E  

,67153967E 

q60161730E 

q69726309E 

. 7 n 7 2 0 3 2 6 ~  
- 7 1 0 8 3 3 3 9 E  
,71462298E 
,71057267E 
.72260314E 
,72695505E 
- 7 3 1 3 8 9 1 4 f i  
. 73590514E 
.74074683E 
,74567201E 
.75076251E 

( G ( t ) )  
0 0  
00 
0 0  
00 
0 0  
00 
00 
00 
00 
00 
00 
00 
0 0  
00 
0 0  
00 
00 
00 
0 0  
00 
0 0  
00 
0 0  
00 
00 
00 
0 0  
00 
0 0  
00 
00 
00 
0 0  

,00000 
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V13925470E 91 

* R 4 2 8 5 8 8 l E  01 
,14104229E 0 1  

.14470462E 0 1  
,14658009E 0 1  
14848562E 0 1  

, 1 5 0 4 2 I 5 9 E  01 
,15238841E 01 
,15438648E 0 1  
.15641622E 0 1  
.158478066 0 1  
,16057243E 0 1  
.16269978E 0 1  
.164136055s 01 

,16928422E 01 
.171'?4801k 01 

.17618225E 0 1  

.118?5J58E 0 1  

.18096;178E 0 1  

.18340736E 01 

.18589Q07k 01 
,18841286E 0 1  
, 1 9 0 9 7 J 0 9 f  0 1  

t 167n5520E 0 1  

. 1 7 3 a 4 7 2 4 k  01 

,19357454E 01 
,1962154OE 0 1  
.119$89706E 0 1  
, 2 0 1 h 2 J 1 4 f  01 

.2U719504E 0 1  

.21OJ4415E 0 1  
, 2 1 2 9 3 9 2 5 f  0 1  
, 2 1 5 8 7 9 0 0 f  01 
.2188641UE 0 1  
.22189526E 0 1  
,2249741YE 0 1  
,22809860E 01 
, 2 3 1 2 7 2 2 8 k  O f  
,234494966 01 

,241J9048E 0 1  
,24446492E 0 1  
.24789358E O i  . ZT13713UE 01. 

25490493k 0 1  
, 2 5 8 4 9 3 3 7 E  r l l  
,26213750e 0 1  
.24583824E 01 
.26959651E O f  

27341328E 0 1  
. 2 7 7 2 8 9 5 1 k  01 

.28522435E 0 1  
2892849YE 0 4  

.29340919E 0 1  
- 2 9 7 5 9 8 0 1 E  01 
.30185255E 01. 

20458522E 0 1  

2\51 16743E 01 

. 2 8 1 2 2 6 2 n ~  01 

2f 
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POPOV - TSYPKIM M A I N  PROGRAM 
FLOW D I A G R A M  
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X( J) = 2 .O*B* X( J-l ) -X( 5-2) 
30 Y(J) 2.0*B*Y(J-I)-Y(J-2) 

BMI = 1.0 - B 
6SQ = 1.0 - B * B  

26 



ANUM = ANI  * D I  t (I  . O - B * * 2 ) * A N 2 * D 2  

DEN = D I * D I  + (1.0 - B * * 2 ) * D 2 * D 2  
RE = ANUM/DEN 
REC = -I.0/43 

P 
FORM K I  E Q U A T I O N  SET 

DO 380 I I =  I ,  I Q  
DO 380 I J =  I t  I K  
RK = I . O / A K (  I J )  
DBN = A N I * D I  +BSQ*AN2*D2  

QB = 1.0 - Q ( I  I ) * B M I  
BQ = Q( I I ) * B S Q  

DN = API I *D2  - A N 2 * D I  

DB D I * D I  t B S Q * D 2 * D 2  

TOP = DBN*QB f 8Q*DN f RK*DB 

AQB = Q( I I ) * B M I  

BN = A N I * A N I  t BSQ*AN2*AN2 

BOT = AQB*BN 

AKP = TOP/BOT 

27 



FORM QUADRATIC EQUATION I N  K 
DO 399 I I  I ,  I Q  
AA = Q ( l I ) * B M I * ( A M I * A N I  t BSQ*ANP*ANZ)  

BB = ( A N I * D I  t B S Q * A N 2 * D 2 ) * ( I . O  - Q ( I I ) * B M I  

CC = ( D I * D I  -t B S Q * D 2 * D 2 )  
D I S C  = SQRT (BB*BB - V.O*AA*CC) 

A K I  = ( -BB t D I S C ) / ( Z . O * A A )  
A K 2  = (-88 - D l S C ) / ( 2 . O * A A )  

YES 

STOP 
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DO I O  J ' I, N 
ANI = G(J)*X(J) + ANI 

AN2 = G(J)*Y(J) -t AN2 

DO I I  J I, I D  

D2 = Es(J)*Y(J) 4- D2 

DI = E(J ) *x (J )  + D I  
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